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The hydrostatic shape, transient deformation, and asymptotic shape of a small liquid 
drop with uniform surface tension adhering to a planar wall subject to an overpassing 
simple shear flow are studied under conditions of Stokes flow. The effects of gravity 
are considered to be negligible, and the contact line is assumed to have a stationary 
circular or elliptical shape. In the absence of shear flow, the drop assumes a hydrostatic 
shape with constant mean curvature. Families of hydrostatic shapes, parameterized by 
the drop volume and aspect ratio of the contact line, are computed using an iterative 
finite-difference method. The results illustrate the effect of the shape of the contact 
line on the distribution of the contact angle around the base, and are discussed 
with reference to contact-angle hysteresis and stability of stationary shapes. The 
transient deformation of a drop whose viscosity is equal to that of the ambient fluid, 
subject to a suddenly applied simple shear flow, is computed for a range of capillary 
numbers using a boundary-integral method that incorporates global parameterization 
of the interface and interfacial regriding at large deformations. Critical capillary 
numbers above which the drop exhibits continued deformation, or the contact angle 
increases beyond or decreases below the limits tolerated by contact angle hysteresis 
are established. It is shown that the geometry of the contact line plays an important 
role in the transient and asymptotic behaviour at long times, quantified in terms of 
the critical capillary numbers for continued elongation. Drops with elliptical contact 
lines are likely to dislodge or break off before drops with circular contact lines. The 
numerical results validate the assumptions of lubrication theory for flat drops, even 
in cases where the height of the drop is equal to one fifth the radius of the contact 
line. 

1. Introduction 
Liquid drops adhering to, moving along, or dislodging from solid surfaces are 

encountered in several natural and engineering settings and under a wide range of 
physical conditions. Observation of rain drops sticking to a window or moving 
along a windshield is a frequent experience of automobile and aircraft travellers. 
In aerodynamics, dislodgement of droplets due to an overpassing high-speed flow 
is the main mechanism for the de-wetting of aircraft surfaces (Durbin 1988a,b). In 
hydrodynamic cleaning, the deforming action of a shear flow is exploited for the 
removal of remnant droplets of a contaminant or impurity. The removal of droplets 
from the narrow passages of a porous medium determines the efficiency of tertiary 
oil recovery and plays an important role in the micromechanics of groundwater flow 
(Bear 1972). 
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In the field of cell biomechanics, liquid drops with generalized interfacial properties 
attached to solid surfaces are often used to model biological cells adhering to blood 
vessels or biomedical flow devices. Studying their behaviour in a shear flow provides us 
with useful information on the magnitude of the adhesion forces, and helps establish 
critical conditions for removal (Lipowsky, Riedel & Shi 1991). 

The deformation of a drop adhering to a solid surface due to gravity or under 
the influence of a shear flow incorporates several fundamental aspects of flow in 
the presence of contact lines, and has been studied in this respect as a prototypical 
theoretical model (Dussan V. & Chow 1983; Dussan V. 1985, 1987). Predominant 
issues are the structure and stability of pendant and sessile shapes, the rearrangement 
of the contact lines to allow for stationary deformed shapes, and the motion of the 
contact lines above the critical conditions established by contact angle hysteresis. 

In the absence of an external flow, a droplet adhering to a solid surface may obtain 
a variety of hydrostatic shapes dependent upon the geometry of the contact line. If 
the fluids are pure, the solid surface is perfectly smooth, and gravitational effects are 
weak, the distribution of the contact angle around the contact line is uniform, and the 
droplet obtains the shape of a section of a sphere. This shape minimizes the surface 
area for a given drop volume. In practice, however, interfacial contaminants and wall 
roughness cause the contact line to obtain arbitrary and sometimes random shapes, all 
of which satisfy the constraint that the contact angles lie within a certain range that is 
bracketed by the receding and advancing contact angles (Dussan V. 1979). The values 
of the latter depend upon the physical properties of the materials and roughness 
of the surface (Marmur 1994). Spilling water on a table and observing the shape 
of the developing drops demonstrate the wide variety of contact-line geometries and 
associated drop shapes obtained in practice. Variation of the contact angle around the 
contact line has been shown to be necessary in order for a drop to remain stationary 
on a non-horizontal surface (Milinazzo & Shinbrot 1988). 

When subjected to a shear flow, a liquid drop adhering to a solid surface may 
exhibit two general types of behaviour. In the first case, it elongates in the principal 
direction of the rate-of-deformation tensor while the contact line remains stationary. 
When the shear rate becomes sufficiently high, the drop breaks up into two or more 
fragments one of which remains attached to the wall. This behaviour is similar to that 
of drops suspended in an infinite shear flow in the absence of a wall (Stone 1994). 
In the second case, which is pertinent to flat drops, the contact line rearranges itself 
in order to maintain the contact angle between the minimum and maximum values 
that are necessary for stationary deformation. At sufficiently high shear rates, the 
contact line begins to move causing the drop to slide. In theoretical models of the 
sliding motion, the velocity of the contact line normal to itself has been assumed 
to be proportional to a certain power of the difference between the local and the 
static, advancing, or receding contact angle (Haley & Miksis 1991). The shear stress 
at the moving contact line exhibits a singular behaviour which, however, can be 
either neglected or removed by introducing a finite slip velocity, with no significant 
consequences on overall behaviour of the drop. 

Dussan V. (1987) discussed the ability of flat drops with small contact angles to 
stick on a solid surface in the presence of a weak shear flow, in the limit of small 
capillary numbers. The assumption of small contact angles allowed her to describe the 
motion inside the drop under the auspices of lubrication flow. Dussan V. argued that, 
near the critical conditions for sliding motion, the contact line obtains a composite 
shape that consists of two parallel straight segments along the sides and two curved 
sections at the upstream and downstream locations, which had been observed in 
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experiments (Furmidge 1962). The contact angle at the downstream section is equal 
to the advancing contact angle, the contact angle at the upstream section is equal 
to the receding contact angle, and the distribution of the contact angle along the 
sides ranges between these two values. Dussan V.’s asymptotic analysis applies near 
the critical conditions when the drop just begins to slide. In a more recent study, 
Feng & Basaran (1994) computed stationary finite deformations of two-dimensional 
air bubbles with fixed contact points protruding from a slot subject to an overpassing 
shear flow, using a finite-element method. Their results established critical conditions 
for the occurrence of steady shapes and illustrated the effects of the Reynolds and 
capillary numbers on the deformation of the bubbles and the streamline pattern. 

In this paper we study the transient deformation of a three-dimensional liquid 
drop attached to a plane wall with a specified contact line subject to a suddenly 
applied simple shear flow. In the first part of the investigation we compute and 
discuss families of hydrostatic shapes in the absence of shear flow, parameterized by 
the drop volume and shape of the contact line. Specifying the contact line renders 
the distribution of contact angle an unknown that emerges as part of the numerical 
solution. We consider, in particular, contact lines with circular and elliptical shapes 
with aspect ratios up to 4. The study of these shapes is motivated by a physical 
scenario in which the contact line of a drop rearranges itself under the action of a 
shear flow so that the distribution of the contact angle falls within the range required 
to prevent sliding; the elliptical shapes are approximations of the composite shape 
observed experimentally and adopted by Dussan V. in her analysis of flat drops at 
small capillary numbers near the critical conditions for sliding motion. 

In the second part of the investigation we consider transient motions and asymptotic 
behaviour in a suddenly applied shear flow, examining the effects of drop volume, 
shape of the contact line, and capillary number. To render the computational cost 
affordable, we assume that the viscosity of the drop is equal to that of the ambient 
fluid. The parameters of the initial-value problem are the drop volume, shape and 
the contact line, and capillary number. The numerical results allow us to establish 
conditions for steady deformation, continued elongation, or sliding motion along the 
wall, explained on the basis of contact-angle hysteresis. 

Computing transient motions up to a steady shape is an alternative to computing 
steady shapes using an iterative numerical method (Feng & Basaran 1994): one disad- 
vantage of the transient method is increased computational cost; two advantages are 
straightforward surface parameterization and a direct correspondence with physical 
experimentation. Both methods provide information on the stability of steady shapes, 
the transient method by monitoring the physical motion at long times, and the direct 
method by monitoring the properties of the iterative algorithm used to compute the 
steady shapes. 

The numerical study of hydrostatic shapes is based on a finite-difference solution 
of the Young-Laplace equation written in terms of surface curvilinear coordinates. 
The numerical studies of the Stokes flow problem are conducted using the standard 
boundary-integral method; the numerical implementation incorporates a high-order 
method of computing the mean interfacial curvature, and an adaptive global param- 
eterization of the interface that maintains a high degree of spatial resolution at large 
deformations. Both of these features are necessary for an accurate computation of 
the motion at large deformations. 
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FIGURE 1. (a) Schematic illustration of a three-dimensional drop adhering to a planar solid surface 
located at y = 0, subject to a semi-infinite simple shear flow urn. The contact line has an elliptical 
shape with major and minor axes respectively equal to 2b and 2c. (b )  Comparison of deformed drop 
contours in the (x, y)-plane at steady state for the conditions described in the caption of figure 6(c )  
with a coarse and a fine grid: solid line, 24 x 12 initial grid; dots, 12 x 6 initial grid. 

2. Mathematical formulation and numerical method 
Consider a liquid drop of volume V resting on a plane wall below a semi-infinite 

body of another fluid as depicted in figure l(a); the wall is located at y = 0. The 
interface between the drop and the ambient fluid exhibits uniform surface tension y ,  
and the contact line is required to have a certain specified shape. When the volume 
of the drop is sufficiently small, the effects of gravity may be neglected, and the wall 
may be considered to be inclined at an arbitrary angle with respect to the horizontal 
direction. We want to compute the hydrostatic shape of the drop in the absence of 
flow, and its transient and asymptotic deformation under the action of a suddenly 
applied simple shear flow along the x-axis as shown in figure l(a). The viscosities 
of the fluids play no role in the hydrostatic state, but affect the structure of the 
flow and deformation of the interface during the unsteady and asymptotic motion. 
Computational constraints to be discussed later in this section require that we restrict 
our attention to instances where viscosity of the drop p is equal to that of the ambient 
fluid. 

2.1. Computation of hydrostatic shapes 
When the ambient fluid is quiescent, and in the absence of significant gravitational 
effects, the drop assumes a hydrostatic shape with constant mean curvature IC, that 
is independent of the physical properties of the fluids. For instance, when the contact 
line is a circle of a certain radius b, the interface assumes the shape of a section of 
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a sphere with centre at (0, -b tan a, 0) and radius R = b sec a, where a satisfies the 
relation V = 748 - 9 sin a - sin 3a)R3/12. 

To compute the shape of a stationary drop with an arbitrary contact line, we 
describe the interface in terms of two surface curvilinear coordinates 5 and q as 
shown in figure l(a), and compute the Cartesian coordinates of interfacial grid points 
so as to satisfy the condition of constant mean curvature 
constraint 

icm - KO = 0, at each grid point, 
V - Vo = 0, 

where K O  and VO are two constants. The mean curvature is 
the formula 

with invariant volume 

computed according to 

where n is the unit vector normal to the interface pointing into the ambient fluid 
(Pozrikidis 1995b, Chapter 1). 

Considering interfaces with four-fold azimuthal symmetry as shown in figure 3(a), 
we divide the axis of the drop from the origin up to the point of maximum elevation 
y = d into N intervals yi/d = t i , i = 1, N ,  where the ascending sequence of dimen- 
sionless ratios {ti} take values between zero and unity. To compute ti we assume that 
the trace of the interface in the (x, y)-plane is part of a circle: ( t i }  corresponds to 
evenly spaced divisions of the polar angle in the (x, y)-plane. The constant-q lines 
are restricted to lie in planes that are perpendicular to the y-axis at y = yi. The 
constant-< lines lie in M azimuthal planes that are evenly distributed with respect 
to the azimuthal angle q. Having specified the volume VO and the geometry of the 
contact line, the unknowns are the polar cylindrical radial distance 0 of the grid 
points from the y-axis, the maximum elevation d,  and the constant mean curvature 
KO. 

Enforcing equations (2.1) and approximating the partial derivatives with finite 
differences provides us with a system of (N - l )M + 2 nonlinear algebraic equations 
for the unknowns. The first and second derivatives in (2.2) are computed using the five- 
point Lagrange’s formula (Abramowitz & Stegun 1970, Chapter 25), with associated 
truncation error in the mean curvature of O ( W 3 )  or O(iW3). The system of nonlinear 
equations is solved using Newton’s method with the Jacobian matrix computed at each 
iteration by numerical differentiation. Under most circumstances, the convergence of 
the method is quadratic, as expected. When the interface tends to become tangential 
to the wall around the base, however, the aforementioned surface parameterization 
becomes inappropriate, and this results in slow convergence or even divergence of 
the iterative method. Fortunately, this pathology occurs only for contact lines with 
high aspect ratios as described in the next section. To this end, it is worth noting 
that the present numerical method is an alternative to methods based on variational 
principles for the free energy of the interface developed by previous authors (see, for 
example, Milinazzo & Shinbrot 1988 ; Hornung & Mittelmann 1990). 

The implementation of the numerical method with a 16 x 16 grid over a quarter 
of the drop runs for 2-5 minutes on a SUN SPARCstation 1 workstation to achieve 
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third-decimal-place accuracy in the mean curvature. The precise amount of required 
CPU time depends upon the geometry of the contact line and drop size. 

2.2. Computation of evolving shapes 
To compute the deformation of a drop in simple shear flow, we adopt the standard 
boundary integral formulation. Under the stipulation that the viscosity of the drop is 
equal to that of the ambient fluid, we obtain an integral representation for the velocity 
at a point xo that is located inside the drop, outside the drop, or at the interface, in 
terms of the incident velocity and a single-layer potential due to the discontinuity in 
the traction across the interface Af, 

where 

The kernel Gw is the Green's function of Stokes flow bounded by an infinite plane 
wall discussed by Pozrikidis (1992). Note that the assumption of equal viscosities 
has allowed us to obtain the integration representation (2.3) instead of a Fredholm 
integral equation for the interfacial velocity, which would be the case if the viscosity 
ratio had any value between zero and infinity except unity. 

The deformation of the drop is described by marking the interface with a grid of 
marker points xij, and then advancing the position of the marker points according 
to the velocity of the fluid, which is equal to the right-hand side of (2.3). To prevent 
clustering of the marker points due to the shearing motion, we advance their position 
with the velocity of the fluid normal to the interface, according to the equation 

U ~ ( X O )  = (kyo, O,O), Af = 2yi~,n. (2.4) 

In the numerical implementation of the method, we take advantage of the fore-and- 
aft symmetry of the flow with respect to the (x, y)-plane to reduce the computational 
domain to half the surface of the drop, and describe the interface in terms of the 
two surface curvilinear coordinates 5 and q shown in figure l(a). The marker points 
are located at the intersections of the 5- and q-lines, which at the initial instant 
are distributed evenly with respect to arclength in their respective directions ; their 
position is computed by interpolating from the hydrostatic shape. 

2.2.1. Evaluation of the single-layer integral 
The single-layer integral in equation (2.3) over the drop interface SO, denoted by 

SLI, is approximated with the sum of integrals over the boundary elements {E,,}, which 
are planar triangles connecting three neighbouring marker points and triangulating 
the whole interface, 

SLI = -y 1" iC,(x)ni(x)Gr(x, xo) dS(x). 
4np En 

The Green's function G W ( x ,  XO) exhibits a singular behaviour as l / r  as r = Ix-xoI + 
0, which is removed by replacing K,(x) in (2.6) with (K , (x )  - rc,(xo)). Conservation of 
mass for the flow due to a point force guarantees that this modification does not alter 
the value of the single-layer integral. The remaining non-singular integrand shows 
a discontinuous behaviour at the point XO, accompanied by substantial oscillations. 
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As a result, the accuracy of the SLI is limited by the computation of the integrals 
over the elements that are adjacent to the singular point XO. To address this issue, 
we classify the boundary elements ( E n }  into two sets. One set contains the triangles 
with one node at the singular point XO, and the second set contains the so-called 
regular triangles. To compute the integral over the first set of triangles, we express 
the integration variables in local polar coordinates with origin at xo and then use the 
four-point Gauss-Legendre quadrature for integration in the radial and polar angular 
directions (Pozrikidis 1995~). The mean curvature at the grid points is computed as 
described in $2.1 for the hydrostatic case, using formula (2.2). The values of IC, and 
n at the quadrature points over the triangular elements are obtained using bilinear 
interpolation with respect to the curvilinear coordinates. To compute the integral over 
the regular triangles we use the three-point Gaussian quadrature over a triangular 
domain (see for example Zienkiewicz & Taylor 1989, p.176). 

It is worth noting that an alternative method of computing the SLI that circumvents 
the explicit computation of the mean curvature described in Pozrikidis (1993,1995a), 
did not produce consistently accurate results. Although it was successful for drop 
shapes whose mean curvature has a uniform sign, it caused numerical instabilities 
when the drops obtained convoluted shapes with convex and concave profiles and 
directional normal curvatures with positive and negative sign. 

After the velocity at the marker points has been computed, their position is 
advanced using the fifth-order embedded Runge-Kutta method (Press et al. 1992, 
p.717). The high-order adaptive time-stepping method becomes necessary when the 
drop reaches a nearly stationary shape, and when the mesh points move close to 
each other due to large interfacial deformations. The latter is evident, for instance, in 
figure 7, which is discussed in $4. 

2.2.2. Regriding and numerical accuracy 
As the drop elongates under the influence of the incident shear flow, regriding 

and mesh refinement become necessary in order to maintain an acceptable level 
of accuracy and spatial resolution. In the numerical procedure, we examine the 
distribution of marker points after each time step with two objectives. When the 
arclength of one of the c-lines around the drop exceeds a given threshold, we increase 
the number of q-lines M by one unit, and reposition the grid points using cubic spline 
interpolations along each (-line, so that the (-lines become evenly distributed with 
respect to arclength. Similarly, when the total arclength of one of the q-lines exceeds 
a preset maximum length, we add one (-line using this method. Thirdly, when the 
spacing between two consecutive ( or q grid lines becomes larger than a certain given 
threshold, we reposition all grid points using cubic spline interpolation along each q- 
or (-line to achieve even spacing in arclength. 

To examine the accuracy of the numerical method, we compare numerical results 
with identical initial and boundary conditions, stated in the caption of figure 6(c), 
conducted using a coarse 12 x 6 and a finer 24 x 12 grid over half the interface. In 
both computations, the drop reaches a stationary shape after a finite evolution period, 
at which point the grid sizes have increased, respectively, to 12 x 8 and 24 x 14 due 
to mesh refinement. In figure l(b) we indicate with dots and plot with a solid line 
the cross-sections of the drop in the (x, y)-plane at steady state and observe small 
differences within the order of the numerical error due to the finite mesh size. 

The computations discussed in 994 and 5 are carried out starting with either a 
16 x 8 grid or a 20 x 16 grid, depending upon the geometrical complexity of the initial 
drop shape. In all cases, the cumulative change in the drop volume due to numerical 
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FIGURE 2. Graphs of the reduced mean curvature ak-, as a function of the reduced major 
dimension of the base contact line bla, where a is the equivalent drop radius, for eccentricities 
e = 0,0.436,0.866,0.980 constructed from the numerical results. The dots represent the numerical 
data. 

error was less than 1% of the initial value from the beginning to the end of the 
computation. A complete run in each case takes from 0.1 hr to 2 hr of CPU time 
on the Cray C90 computer of the San Diego Supercomputer Center with optimized 
compilation. 

3. Hydrostatic shapes 
In the numerical studies we consider drops whose contact lines have elliptical 

shapes with semi-axes in the x- and z-directions respectively equal to b and c as 
shown in figure l(a). Non-dimensionalizing all lengths by the equivalent drop radius 
a, defined in terms of the volume of the drop I/ as u = (V/(47~/3))'/~, we find that 
the hydrostatic shape of a drop depends upon the size and aspect ratio of the contact 
line expressed by the two geometrical ratios b /a  and c/a. Because of the four-fold 
symmetry of the interfaces, it suffices to consider shapes with b 2 c, where the major 
axis of the contact line is oriented along the x-axis. Furthermore, it is convenient to 
introduce the eccentricity of the contact line e = (1 - ( ~ / b ) ~ ) ' / ~  and discuss the shapes 
in terms of b /a  and e. As e increases from zero to unity, the contact line reduces 
from a circle, to an elongated ellipse, to a straight segment. 

The mean curvature of a drop with a circular contact line, corresponding to 
e = 0, is computed readily in closed form using simple geometrical arguments, and 
is found to be given by brc, = cosp, where f i  is determined from the equation 
sin 38 + 9 sin p - 8 + 1 6 ( ~ / b ) ~  c0s3 p = 0. A graph of arc, against b/a yields the solid 
line shown in figure 2. As b /a  tends to zero, the interface tends to become a whole 
sphere, and the mean radius of curvature tends to become equal to the equivalent 
radius yielding arc, = 1. On the other hand, as b /a  tends to infinity, the interface 
assumes the shape of an increasingly smaller section of a sphere, and the mean radius 
of curvature becomes much larger than the equivalent radius yielding arc, = 0. 

Numerical results for finite contact-line eccentricities show a similar behaviour, 
as illustrated in figure 2 for e = 0.436,0.866,0.980 corresponding to aspect ratios 
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e\b/a 0.7 1.0 1.5 2.0 2.5 3.0 4.0 
0 0.983 0.920 0.621 0.292 0.131 0.065 0.021 

0.436 0.986 0.936 0.681 0.346 0.161 0.080 0.026 
0.866 0.994 0.977 0.897 0.723 0.484 0.287 0.101 
0.980 0.997 0.989 0.968 0.942 0.910 

TABLE 1. Dimensionless mean curvature ak-, of different eccentricities 

c /b  = 0.9,0.5,0.2. The precise values of U K ,  for a range of values of b / a  are collected 
in table 1. Accurate results for high eccentricities were prohibited by the occurrence of 
convoluted interfacial shapes at small volumes requiring a different type of interfacial 
parameterization as discussed in $2. As the size of the contact line is reduced, the 
interfaces tend to obtain the shape of a whole sphere, and the radius of curvature 
tends to become equal to the equivalent radius a irrespectively of the aspect ratio. 
This occurrence reveals the physically intuitive behaviour that the precise shape of a 
small contact line has a small influence on the spherical shape of a larger drop. As 
b /a  becomes large, the interfaces tend to obtain an asymptotic shape whose precise 
form depends upon the aspect ratio of the contact line. The y-coordinate of the 
interface in this limit, which can be regarded as the height of the interface, satisfies 
Poisson’s equation with a constant forcing term that is proportional to twice the mean 
curvature, and is subject to homogeneous Dirichlet boundary conditions around the 
contact line (Pozrikidis 1995b, Chapter 4). A plot of the height of the interface as a 
function of x and z yields the velocity distribution for pressure-driven flow in a tube 
whose contour coincides with the contact line. Figure 2 shows that the curvature of 
the interface in this limit tends to vanish independently of the aspect ratio of the 
contact line. 

The reduced mean curvature U K ,  is a measure of the deviation of the main body 
of the drop from the spherical shape. For a certain value of the geometrical ratio 
b/a ,  there is a transitional value of the eccentricity below which the interface is nearly 
spherical and above which it obtains a more involved shape and finally tends to obtain 
an asymptotic flattened shape. In figure 3(a-c) we present a sequence of shapes for 
b /a  = 21’3 m 1.26 and e = 0.436,0.866,0.980 corresponding to c /b  = 0.9,0.5,0.2. 
The eccentricity of the contact line for e = 0.436 is sufficiently small so that the 
interface takes the shape of a nearly perfect hemisphere. Higher eccentricities yield 
more convoluted shapes especially around the base. The changes in the interfacial 
shape with varying the eccentricity are better illustrated by plotting cross-sections of 
the interfaces in the (x,y)- and (y,z)-planes, shown in figure 3(d, e). It is interesting to 
note that as e is increased, the interface tends to form a skirt around the base in the 
(x,y)-plane, and obtains a nearly cylindrical shape in the (y,z)-plane. 

Similar behaviour is observed for larger drops with b/a  = 0.7 depicted in figure 4(a- 
e). A noteworthy difference is that the skirting of the interface in the (x,y)-plane near 
the contact line is masked by a global retraction of the main body of the drop yielding 
a slight dimple around the base as shown in figure 4(d). Corresponding results for 
smaller drops with b / a  = 2.0 are shown in figure 5(a-e). The skirting around the base 
in the (x,y)-plane is pronounced, and the transition to highly elongated asymptotic 
shapes is evident at high eccentricities. 

A circular contact line has a uniform contact angle given by 0 = n/2 - a where a 
was defined in the first paragraph of 82.1. In figures 3(f), 4(f) and 5(f) we plot the 
distribution of 0 as a function of the azimuthal angle q measured around the y-axis 
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FIGURE 3. Hydrostatic drop shapes with b/a  = 1.26 and various contact-line eccentricities; when 
the contact line is a circle, the shape of the drop is a hemisphere. (a-c) An elliptical contact line 
with eccentricity (a) e = 0.436; ( b )  e = 0.866; ( c )  e = 0.980. (d,e) Cross-sections of the interfaces in 
( d )  the (x, y)-plane and (e )  the (y,z)-plane: -, e = 0 ;  ---, e = 0.436; ---, e = 0.866; ---, 
e = 0.980. ( f )  The contact angle @/n plotted as a function of the azimuthal angle rp; line styles as 
in (d,e). 

from the negative part of the x-axis, for several values of the contact-line eccentricity. 
In all cases we observe that minimum and maximum contact angles, Omin and Om,,, 
occur, respectively, in the z = 0 and x = 0 planes. The variations are mild for aspect 
ratios up to 2, but become pronounced for more elongated shapes. It is interesting to 
note, in particular, that the contact angle for e = 0.980 shown in figure 5(f) is close 



Shear$ow over a liquid drop adhering to a solid surface 

FIGURE 4. Same as figure 3 but for b/a = 0.7 
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FIGURE 5. Same as figure 3 but for b/a  = 2. 

to zero at the major axis, which means that the interface is nearly tangential to the 
wall. 

In practice, the contact line will remain stationary and the drop will be static 
as long as the contact angle, 0, is less than the advancing contact angle OA but 
higher than the receding contact angle OR, OR < 0 < OA; OA and OR are physical 
constants dependent upon the physical properties of the fluids and wall roughness 
(Dussan V. 1979). Having specified these constants, one may use figures 3(f), 4(f), 
5(f) to predict the critical aspect ratio of the contact line above which stationary 
drop shapes cannot be established. 

4. Deformation of drops with circular contact lines 
Non-dimensionalizing all variables using as length scale the equivalent drop radius 

a and time scale the inverse shear rate l / k ,  we find that the transient motion and 
asymptotic deformation of a drop with a circular contact line in a suddenly applied 
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simple shear flow depends upon the reduced radius of the contact line b/a = c/a and 
capillary number defined as Ca = p k h / y  where h is the maximum height of the drop 
in the hydrostatic state. The choice of this length scale emerges by balancing the 
magnitudes of the deforming viscous stresses and of the restraining stresses due to 
the capillary pressure over the interface. Two central objectives of the computations 
are to describe the magnitude of the drop deformation, and identify changes in the 
distribution of the contact angle around the contact line as a result of the motion. 

4.1. Hemispherical drop 
First, we consider the deformation of a drop with a hemispherical hydrostatic shape 
corresponding to a/b = a/c = 0.794, and examine the motion as a function of the 
capillary number. In figure 6(a, b), we plot with solid lines the maximum magnitude of 
the component of the velocity normal to the interface, l [u-n/lm = maxxESD lu(x)*n(x)l ,  
and the deformation parameter D = (A - B ) / ( A  + B )  as functions of time since the 
beginning of the motion for Ca = 0.126. A and B are, respectively, the maximum and 
minimum radial distances of the interface from the origin of the global coordinate 
system in the (x,y)-plane. Figure 6(a) shows that the magnitude of the normal 
component of the velocity decays exponentially in time as 1111 * nilrn - e-", with a 
decay constant 6 that is approximately equal to 2.06k. Figure 6(b) shows that the 
deformation parameter D approaches an asymptotic value that is approximately equal 
to 0.21. Consequently, the drop deforms and then reaches the steady shape shown 
in figure 6(c), where the deforming viscous stresses are balanced by the capillary 
pressure. The asymptotic inclination of the maximum radial distance in the (x,y)- 
plane with respect to the x-axis is equal to 0.2067~ As a secondary point pertaining 
to the performance of the numerical method, we note that the singular point of the 
surface coordinate system remains at the top of the drop during the deformation. The 
fact that the surface coordinate lines are smooth and remain dense guarantees that 
the computations are carried out with accuracy and adequate spatial resolution. 

4.1.1. Eflect of capillary number on deformation 
The numerical results show that as Ca is increased, the drop takes an increasingly 

more deformed asymptotic shape. In figure 6(d) we plot cross-sections of steadily 
deformed drops in the (x, y)-plane for Ca = 0.063,0.126,0.157 and 0.22. The 
asymptotic shapes are qualitatively similar to the steady shapes of two-dimensional 
inviscid bubbles emerging from a slot computed by Feng & Basaran (1994) and 
shown in their figure 5. 

To illustrate the relationship between the capillary number and asymptotic de- 
formation in quantitative terms, in figure 6(e) we plot with dots the deformation 
parameter D at steady state as a function of Ca, and observe a monotonic increase. 
At small deformations the curve D(Ca) is linear with a slope that is approximately 
equal to 1.55. Noting that the corresponding slope for a spherical drop suspended 
in an infinite simple shear flow is equal to 35/32 FZ 1.09 (Taylor 1932) suggests that 
the presence of the wall promotes the deformation of the drop, by accentuating the 
magnitude of the deforming viscous stresses. Additional supportive evidence for the 
deformation action of the wall is provided by the observations that (a) the shear stress 
at the top of a rigid hemispherical protrusion on a plane wall due to an overpassing 
simple shear flow is higher than that at the top of a solid spherical particle that is sus- 
pended in an infinite simple shear flow by a small factor of 1.012 (Pozrikidis 1995c), 
and (b) the presence of a wall exacerbates the deformation of a nearby spherical drop 
in shear flow (Kennedy, Pozrikidis & Skalak 1994). The numerical results show that, 
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FIGURE 6. Shear flow past a drop with hemispherical shape at different capillary numbers. (a) The 
evolution of the maximum magnitude of the normal velocity at the interface for Ca = 0.126, shown 
by plotting log( Ilu * nilm) as function of time. (b)  The evolution of the deformation parameter D. 
( c )  Asymptotic drop shape for Ca = 0.126. (d )  Cross-section of steady deformed drops in the (x, 
y)-plane for: ---, Ca = 0.063; -, Ca = 0.126; ---, Ca = 0.157; ---, Ca = 0.22. (e )  The 
deformation parameter D as a function of Ca: -, the present study; ---, Kennedy et al. (1994) 
for unbounded shear flow. ( f )  Variation of the inclination angle 4 as function of Ca: -, present 
study; ---, Kennedy et al. (1994); ---, Cox (1969). (8) Same as (d)  but for the contact angle 
O / n  plotted as a function of the azimuthal angle cp. ( h )  Advancing (-) and receding contact 
angles (---) as functions of the capillary number. 
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at larger deformations, the curve D( Ca) becomes concave upwards, and its shape is 
similar to that of the analogous curve for drops suspended in an infinite shear flow, 
shown with the dashed line in figure 6(e) after Kennedy et al. (1994). 

It is instructive to compare the behaviour of the function D(Ca) at small capillary 
numbers with that reported by Feng & Basaran (1994) for a two-dimensional inviscid 
bubble protruding from a slot. They find that the slope of the D(Ca) curve at small 
deformations is the same as that occurring in the absence of the wall. An explanation 
lies in the fact that the solution for infinite shear flow past a circular bubble also 
satisfies the no-slip condition at the mid-plane y = 0 which may therefore be regarded 
as a wall. This is also true for a spherical inviscid bubble suspended in infinite shear 
flow, but not for a drop with finite viscosity (Bartok & Mason 1958): the motion 
within a drop causes the onset of a finite velocity in the y-direction at the y = 0 plane 
associated with the presence of closed streamlines. The solution for shear flow over a 
hemispherical rigid protuberance on a plane wall, representing an attached drop of 
very large viscosity, is available in terms of an infinite expansion (Price 1985), but the 
complexity of the analysis renders the analogous computation for a liquid drop an 
arduous task that lies outside the scope of the present work. 

In figure 6(f) we plot with dots the polar angle corresponding to the maximum 
radial distance of the interface from the origin in the (x, y)-plane with respect to 
the capillary number. The dashed line shows the inclination angle of a drop that is 
suspended in infinite shear flow after Kennedy et al. (1994), and the dot-dashed shows 
the predictions of a corresponding asymptotic theory for small deformations due to 
Cox (1969). As in the case of unbounded flow, as Ca is increased the inclination angle 
decreases monotonically from the initial value of n/4 corresponding to the principal 
direction of the rate-of-deformation tensor of the incident shear flow, which means 
that the drop tends to lean towards the wall. The inclination angle in the presence 
of the wall is remarkably close to that for infinite shear flow. The predictions of the 
asymptotic theory are accurate only in a limited range of small deformations. 

The numerical computations have shown that there is a critical value of the capillary 
number below which the drop elongates and reaches a steady state, and above which 
it continues to elongate until the numerical method is no longer able to describe the 
motion with sufficient accuracy and reasonable computational cost. The behaviour 
of the deformation parameter D for a case where a steady asymptotic shape is not 
established is shown with a dashed line in figure 6(b). The numerical results place the 
critical value Cacr somewhere between 0.22 and 0.25. Noting that the corresponding 
critical capillary number for infinite shear flow is equal to 0.37 (Kennedy et al. 1994) 
suggests once more that the presence of the wall promotes the deformation and 
undermines the integrity of a drop. 

The continued elongation of a drop with Ca = 0.252 is illustrated in figure 7(a-e). 
At long times, the rear portion of the drop is pushed downwards toward the wall 
and develops a region of negative curvature, whereas the front of the drop shows 
a tendency to roll over the wall. To demonstrate this behaviour more clearly, in 
figure 7(f) we plot the contour of the interface in the (x,y)-plane at a sequence of 
characteristic times. On the basis of the depicted shapes, one may speculate that, 
at long times, the drop will break up into two fragments, one of which will remain 
attached to the wall. Preliminary stages of this motion are evident in the contorted 
shape shown in figure 7(e) .  From a numerical standpoint, it is interesting to note the 
significant regriding of the interface as the surface area of the drop becomes larger. 
The computations are terminated at the point where the curvilinear coordinates are 
no longer effective and the numerical error is not small. 
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FIGURE 7. Evolution of an initially hemispherical drop for Ca = 0.252 at times (a) k t  = 0.822, ( b )  
2.579, (c )  5.887, (d) 9.206, ( e )  12.721. (f) The cross-sections of the drop in the (x, y)-plane at the 
times shown in (a-e). 

The rate of decay of the normal component of the interfacial velocity 6 defined 
at the beginning of this section is a measure of the time it takes a drop to reach a 
steady state. The numerical results show that 6 = 9.76k at Ca = 0.0315, 6 = 4.53k at 
Ca = 0.063, 6 = 3.0% at Ca = 0.0945, and 6 = 2.06k at Ca = 0.126. The larger the 
capillary number, the smaller the value of 6, and the longer it takes a drop to reach 
equilibrium; at the critical value Cacr, 6 vanishes and the required time becomes 
infinite. 

4.1.2. Distribution of the contact angle 
Concentrating on the motion at capillary numbers that are lower than the critical 

value for steady deformation, we examine the distribution of the contact angle around 
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c l b  \ a l l  0.622 0.794 1.09 1 
0.5 0.165 f 0.015 0.143 f 0.016 0.113 f 0.013 
1 0.2 f 0.018 0.236 f 0.016 0.191 f 0.027 
2 0.235 f 0.015 0.219 0.019 0.135 & 0.015 

TABLE 2. Critical capillary number Cacr, where 1 is equal to the maximum dimension of the base. 

the contact line. In figure 6(g) we plot the distribution of the contact angle as a 
function of the azimuthal angle cp measured around the y-axis from the negative 
x-axis, for Ca = 0.063,0.126,0.157 and 0.22. In the hydrostatic state the distribution 
of O is uniform, equal to n/2, but in the asymptotic deformed state we observe 
substantial variations. For instance, the variation for Ca = 0.126 amounts to 65% of 
the hydrostatic value. In all cases, the contact angle increases from the far upstream 
point to the far downstream point, with maximum and minimum contact angles 
occurring in the (x,y)-plane. If the contact angle at a particular point were to cross 
the thresholds defined by contact-angle hysteresis, the contact line would rearrange 
itself in order to eliminate this occurrence, obtaining an elongated shape. 

As the capillary number is increased, the distribution of the contact angle becomes 
wider and tends to exhibit sharper variations of larger amplitude at the downstream 
rather than the upstream portion of the drop. Furthermore, the contact angle obtains 
the hydrostatic value 71/2 at a point that is located further downstream from the 
centre of the circular base. Physically, this behaviour suggests that the front of 
the drop is likely to start moving before the rear when the contact angle exits the 
hysteresis window enclosed by OA and OR. To establish the critical capillary number 
above which the distribution of the contact line moves outside the hysteresis window, 
in figure 6(h) we plot the maximum and minimum values of the contact angle against 
Ca, as deduced from the numerical computations. As Ca approaches the critical 
value for continued deformation, Omin tends to vanish whereas Om,, tends to become 
equal to TC, which indicates that both the far upstream and downstream portions of 
the drop tend to become tangential to the wall. Based on these observations one 
may speculate that a hemispherical drop will begin sliding before it elongates and 
disintegrates under the action of the simple shear flow. 

4.2. Efect of drop volume 
The behaviour of drops whose volume is smaller or larger than that corresponding 
to the hydrostatic hemispherical shape is similar to that discussed in the preceding 
subsection. Note that as the ratio a / b  becomes very large, the drop tends to obtain 
the hydrostatic shape of a whole sphere in point contact with the wall. In all cases 
we find that there is a critical capillary number defined with respect to the maximum 
height of a drop in the hydrostatic state, shown in table 2, above which the drop is 
unable to reach a steady shape and exhibits continued deformation. The value of 
this critical capillary number ranges between 0.252 and 0.164, and is thus a rather 
weak function of the drop volume. This range is substantially lower than the critical 
value predicted on the basis of the results for a drop that is immersed in an inJinite 
unbounded shear flow; for a whole spherical drop in point contact with the wall, the 
later is equal to 0.74 (Kennedy et al. 1994). These significant differences underline 
once more the destabilizing influence of the wall. 

Above the critical capillary number, the drops exhibit continued elongation possibly 
leading to breakup. An example of a continued elongation of a drop with a /b  = 2.609 
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FIGURE 8. Sequence of evolving drop shapes for a/b = 2.609 and C a  = 0.578 at times (a) kt = 0, 
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at Ca = 0.578, whose volume is larger than that corresponding to the hemisphere, is 
shown in figure 8(a-f). The tendency of the drop to detach is evident in the thinning 
of the cross-sectional area around the base shown in figure S(f). An example of a 
continued elongation of a drop with a/b = 0.622 at Ca = 0.291 whose volume is 
smaller than that corresponding to the hemisphere, is shown in figure 9(a-f). The 
tendency of the drop to detach is evident in the interfacial corrugations around the 
base shown in figure 9(f). 

It is instructive to consider changes in the drop behaviour on maintaining the value 
of Ca fixed and varying the drop volume. In figure 10(a, b)  we present asymptotic 
steady shapes of drops with equivalent radii a/b = 0.622 and 1.091 for capillary 
number Ca = 0.126. The shape of a drop for a /b  = 0.794, corresponding to a 
hemispherical hydrostatic shape, was illustrated in figure 6(c). It is evident that, as 
the volume of the drop is reduced, its rear portion tends to flatten and eventually 
develops a region of negative curvature in the (x,y)-plane; roughly speaking, the drop 
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FIGURE 9. Sequence of evolving drop shapes for a / b  = 0.622 and Ca = 0.291 at times (a) k t  = 0, 
(b )  1.182, ( c )  3.396, ( d )  5.529, (e )  7.706. ( f )  The cross-sections of the drop in the (x, y)-plane at the 
times shown in (a-e). 

is pressed down by the incident flow. In all cases, the front portion of the drop 
projects into the flow. 

In figure 1O(c) we plot the corresponding distributions of the contact angle along 
the contact line. Figure 10(d) is identical to figure lO(c) except that the contact 
angle is shifted by the uniform contact angle of the hydrostatic shape. The curves 
corresponding to the small and large volumes exhibit the strongest variations and 
nearly the same range of variation between Omin and O,,,. This indicates that the 
contact lines of drops with small or large volumes are likely to move before those of 
drops with the intermediate volumes. 

When both a / b  and Ca are sufficiently small, the drop obtains a flat shape, and the 
motion of the fluid within the drop may be described on the basis of the theory of 
lubrication flow (Dussan V. 1987). Two important assumptions of this theory are that 
the disturbance flow around the drop is decoupled from the locally unidirectional 
parabolic flow inside the drop, and the flow inside the drop is driven primarily by the 
shear stress due to the incident simple shear flow, urn = (ky ,  0,O). The capillary pressure 
field due to variations of the mean curvature makes an additional contribution to the 
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FIGURE 10. The effect of drop volume for a fixed capillary number Ca = 0.126. (a,b) Steady drop 
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-, a / b  = 0.794; ---, a / b  = 1.091. (d) Same as ( c )  but shifted by the initial uniform contact 
angle to show relative variations. 

momentum balance. The boundary conditions on the two components of the velocity 
that are tangential to the wall inside the drop are 

(4.1) 

To establish the range of validity of the lubrication theory, we consider the flow 
past a drop with equivalent radius a /b  = 0.423 at Ca = 0.02. In figure l l (a)  we show 
the deformed steady shape established at large times; the ratio between the maximum 
drop height and radius of the contact line is h,,,.b = 0.230, which is moderately but 
not exceedingly small. In figure l l (b ,  c) we present profiles of the x and z velocity 
components across the height of the drop at three randomly selected points shown 
with dots in figure ll(a). The dots in figure l l (b ,  c) indicate the position of the 
interface. We observe that all profiles have a parabolic shape inside the drop, and 
the profile of u, becomes almost linear above the drop. The negative velocities in 
figure l l ( b )  reveal the presence of recirculating flow inside the drop. The slopes of the 
profiles at the interface are in good agreement with the boundary conditions stated 
in (4.1). These observations validate the assumptions of lubrication flow even for 
drops with moderate height, and corroborate the use of approximate models for the 
analysis of flow over stationary or even sliding drops. 

8% 8% 
- = k and ~ = 0, at the drop surface y = h(x,z). 
8Y 8Y 
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FIGURE 11. Behaviour of flat drops and validation of the assumptions of lubrication theory. (a) 
Steady deformed shape of a flat drop a / b  = 0.423 with circular contact line for Ca = 0.02. (b)  
Profile of the x-velocity component across the drop at three randomly selected points shown with 
dots in (a). (c) Same as ( b )  but for the z-velocity component. The dots in (h)  and (c) indicate the 
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5. Deformation of drops with elliptical contact lines 
Results for drops with elliptical contact lines revealed behaviour that is qualitatively 

similar to that described in $ 4  for drops with circular contact lines. We find that 
there exists a critical value of the capillary number Cacr, above which a drop deforms 
continuously under the influence of the incident flow, and another critical capillary 
number above which the contact-angle distribution is likely to exit the hysteresis 
window. The latter, however, cannot be computed before the values of the receding 
and advancing contact angles are specified. 

In table 2 we present estimates of Cacr for three values of the aspect ratio of the 
elliptic contact line c /b  = 0.5,1,2 and three values of the reduced equivalent drop 
radius al l ,  where 1 is the maximum dimension of the base, 1 = max(b,c). When 
c /b  = 0.5 the major axis of the ellipse is positioned in the direction of the shear flow, 
whereas when c / b  = 2 it is positioned in a transverse manner with respect to the 
shear flow. Maintaining the conventions of $4, we define the capillary number with 
respect to the maximum drop height in the hydrostatic state. 

The results of table 2 indicate that the critical capillary number ranges between 0.10 
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FIGURE 12. The effect of aspect ratio of the contact line for fixed equivalent drop radius all = 0.794 
and capillary number Ca = 0.1. (a-c) Steady deformed drop shape with contact-line aspect ratio 
( a )  c / b  = 0.5; ( b )  c / b  = 1; (c )  c / b  = 2. ( d )  Drop contours in the (x, y)-plane. (e )  Evolution of drop 
inclination. (f) Contact-angle distribution: ---, c / b  = 0.5; -, c / b  = 1; ---, c / b  = 2. 

and 0.24; this relatively mild variation corroborates the choice of the drop height as 
the appropriate length scale in the definition of the capillary number. It is interesting 
to note that the critical value of the capillary number increases monotonically down 
the first column corresponding to small drops, but obtains a maximum value at the 
middle entries of the second and third columns corresponding to drops with moderate 
and large size. On the other hand, the critical value of the capillary number decreases 
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monotonically across the first and third rows corresponding to eccentric contact 
lines, but obtains a moderate maximum value at the middle entry of the second row 
corresponding to drops with circular contact lines. These differences underline the 
importance of the geometry of the contact line not only for the hydrostatic shape, 
but also for the nature of the transient and asymptotic deformation. 

To illustrate the effect of aspect ratio of the contact line on the shape of steadily 
deformed drops, in figure 12(a-c) we present the steady shapes of drops for c /b  = 
0.5,1,2 all with all = 0.794 corresponding to a hemispherical hydrostatic drop with 
a circular contact line, for capillary number Ca = 0.10. The critical values of the 
capillary number are listed in the second column of table 2. For c /b  = 0.5 the 
computations start from the hydrostatic shape shown in figure 3(b), whereas for 
c /b  = 2 the initial shape is obtained by rotating the shape shown in figure 3(b) by 90" 
around the y-axis. Comparing the steady shape shown in figure 12(b) for a circular 
contact line, to those shown in figure 12(a, c) for eccentric contact lines, we find that 
the latter are appreciably more involved. The effect of the contact line eccentricity 
on the asymptotic shape is illustrated more directly in figure 12(d) where we plot the 
drop contours in the (x, y)-plane. 

To illustrate the effect of the contact line on drop inclination, in figure 12(e) we 
plot the evolution of the polar angle corresponding to the maximum radial distance 
of the interface from the origin in the (x, y)-plane. It is interesting to note that 
the initial inclination is equal to 7c/4 for the circular contact line, and 7c/2 for the 
eccentric contact lines. In the asymptotic state, the drop with the circular contact 
line is tilted towards the wall more than the drops with the elliptical contact lines. 
The significance of the inclination angle, however, is diminished by the fact that the 
interfaces obtain convoluted shapes. 

The effect of the contact-line eccentricity is further demonstrated by examining 
the distribution of the contact angle shown in figure 12(f). Concentrating on the 
case c /b  = 0.5, we compare the contact-angle distribution in the deformed state, 
shown with a dashed line in figure 1 2 0 ,  to that in the hydrostatic state shown with 
a dash-dotted line in figure 3(f), and find that the position of maximum angle is 
shifted downstream, and its value is increased by a small amount. Furthermore, the 
magnitude of the minimum contact angle has decreased substantially with respect 
to that in the hydrostatic state. For c /b  = 2, similar comparisons reveal that 
the positions of maximum and minimum contact angle are virtually unaffected by 
the motion, the magnitude of the maximum contact angle increases substantially, 
whereas the magnitude of the minimum contact angle is only sightly perturbed. 
These observations suggest that drops with non-circular contact lines are likely to 
slide over the wall before drops with circular contact lines. 
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